P-290

Long-Travel Piezoelectric Z-Nanopositioning Flexure Stage / Actuator

P-290 nanopositioning stage

- Vertical Travel to 1000 μm
- Integrated Double-Flexure Motion Amplifier
- Non-Magnetic Stainless Steel Design

The P-290 is a unique, piezoelectrically driven elevator stage providing a 1000 μ m stroke. It is designed for highresolution static and low-frequency dynamic positioning applications.

Working Principle

The P-290 is a vertical positioning platform based on a piezoelectric drive system. The drive system consists of two stacked piezo flexure tilt positioners (similar to P-287) machined from one solid piece of stainless steel. Each of the two tilt positioners is equipped with a high-voltage piezoelectric stack actuator (0 to -1000 V) integrated into a zero stiction, zero-friction, wire-EDM-cut flexure motion amplifier system. The positioning platform is guided by linear ball bearings to eliminate tilt.

Application Examples

- Wafer inspection
- Nanopositioning
- Medical analysis
- Biotechnology
- Optics

Ordering Information

P-290.00

Z Piezo Flexure Stage, 1000 µm Options:

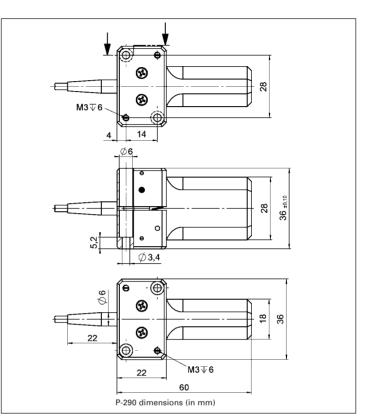
P-703.20

High-Vacuum Modification, see the "Piezo Actuators" section, p. 1-44

Ask about custom designs!

Notes

See the "Piezo Drivers & Nanopositioning Controllers"


Technical Data

Models	P-290.00	Units	Notes see p. 2-84
Active axes	Z		
Open-loop travel @ 0 to -1000 V	1000	μm ±20%	A4
* Open-loop resolution	20	nm	C0
Stiffness	0.07	N/µm ±20%	D1
Push / pull force capacity (in operating direction)	(50 / 10)	Ν	D3
Max. (±) normal load	50	Ν	D4
Electrical capacitance	500	nF ±20%	F1
** Dynamic operating current coefficient (DOCC)	0.63	μΑ/(Hz x μm)	F2
Unloaded resonant frequency	100	Hz ±20%	G2
Operating temperature range	-20 to 80	°C	H2
Weight (with cables)	280	g ±5%	
Body material	N-S, S		L
Recommended amplifier/controller (codes explained p. 2-17)	B, I		

* For further information see p. 2-8. Resolution of PI piezo nanopositioners is not limited by friction or stiction. The value given is noise equivalent motion with E-507 amplifier.

** Dynamic Operating Current Coefficient in μA per Hz and μm.

Example: Sinusoidal scan of 300 μm at 5 Hz requires approximately 1 mA drive current.

section, p. 6-8 *ff.* for our comprehensive line of low-noise control electronics. See the "Selection Guide" on p. 2-14 *ff.* for comparison with other nanopositioning systems.